1. 平衡式叶片泵
1795年英国约瑟夫·布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。
第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。液压元件大约在 19 世纪末 20 世纪初的20年间,才开始进入正规的工业生产阶段。1925 年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动 的逐步建立奠定了基础。20 世纪初康斯坦丁·尼斯克(G·Constantimsco)对能量波动传递所进行的理论及实际研究;1910年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。
第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近 20 多年。在 1955 年前后 , 日本迅速发展液压传动,1956 年成立了“液压工业会”。近20~30 年间,日本液压传动发展之快,居世界领先地位。
2. 柔性叶片泵
高级钳工培训试题及答案
一、填空题。1、液压泵的主要性能参数有流量、容积效率、压力、功率、机械效率、总效率。2、液压泵的种类很多,常见的有齿轮泵、叶片泵、柱塞泵、螺杆泵。3、液压控制阀可分为方向控制阀、压力控制阀、流量控制阀三大类,4、压力控制阀用来控制、调节液压系统中的工作压力,以实现执行元件所要求的力或力矩。
5、压力控制阀包括溢流阀、减压阀、顺序阀等。6、流量控制阀是控制、调节油液通过阀口的流量,而使执行机构产生相应的运动速度。7、流量控制阀有节流阀、调速阀等。8、单向阀的作用是使油液只能向一个方向流动。9、方向控制阀的作用是控制液压系统中的油流方向,以改变执行机构的运动方向或工作顺序。
10、换向阀是利用阀芯和阀体的相对运动来变换油液流动的方向,接通或关闭油路。11、根据阀芯运动方式不同,换向阀可分为滑阀式、转阀式两种。12、根据蓄能器的结构来分有活塞式、弹簧式、皮囊式等。13、密封件是用来防止或减少液压装置的内、外泄漏的。
14、常用密封件有:O型密封圈、Y型密封圈、V型密封圈等。15、标记为Dxd的O型密封圈,D表示密封圈外径,d表示橡胶带断面直径。16、O型密封圈具有结构简单、密封性能好、磨擦力小、槽沟尺寸小、制造容易等优点,因而广泛用于各种定密封和可动密封中。
17、O型密封圈用于固定密封时,工作压力可达100MPa,用于旋转密封时,压力不宜超过15MPa,圆速度不应超过2 m/s,用于往复直线运动密封时,工作压力可达70MP。18、型号为CB-B50、YB-32的油泵,名称分别是齿轮泵、叶片泵,额定流量分别是50r/min、32r/min。
19、机械油号数是以其运动粘度来命名的,30号机油在50℃时运动粘度为27~33厘池,40号机油在50℃时运动粘度为37~43厘池。20、机油粘性越大,流动性能越差、粘性越小,流动性越好,润滑性下降。21、常用滑动轴承材料有金属、非金属、粉末冶金材料三大类。
22、油性指润滑油的极性分子与磨擦表面吸附而形成边界边膜的能力。若油膜与界面之间吸附力较大,且边界膜不易破裂。23、磨擦表面的润滑状态有无润滑状态,边界润滑状态、流体润滑、混合润滑状态。24、润滑技术的内容包括正确选用润滑剂的品种和用量,采用合理的润滑方式,改善润滑剂的性能并保持润滑剂的质量等。
25、润滑油的油性随温度的改变而变化,温度过高,吸附膜分解而破坏。26、静密封是指密封表面与接合零件间没有相对运动的密封。27、动密封是指密封表面与接合零件间有相对运动的密封。28、旋转密封有接触式和非接触式两种。29、毛毡密封和密封环式密封属于接触式密封;缝隙式,用油环式,迷宫式密封属于非接触式密封。
30、半干磨擦和半流体磨擦都属混合磨擦,半干磨擦是指磨擦表面间同时存在着干(无润滑)磨擦和边界磨擦的情况。半流体磨擦是指磨擦表面间同时存在着流体磨擦和边界磨擦,并偶有部分干磨擦。31、滑动轴承的磨擦表面之间最低限度应维持边界润滑或混合润滑状态。
32、交流接触器是用来接通或切断主回路或控制回路的自动电器。33、交流接触器通常由电磁和触头两部分组成,容量稍大的接触器还设有灭弧室。34、灭弧装置是用来尽快熄灭电弧,避免电弧延迟电路断开,烧伤触点、破坏绝缘,引起电器爆炸。35、目前低压电器灭弧室多采用陶瓷和耐弧塑料制作。
36、行程开关的作用是接通和断开控制电路。37、热电器是属于保护电器,主要用于对三相异步电动机进行过载保护。38、三相鼠笼式异步电动机全压起动时,启动电流是额定电流的4~7倍,启动电动大的后果有:①使供电线路电压降增大,本身启动转矩减小。影响同一线路上的电气设备正常工作。
②使电机绕组发热,易造成绝缘老化。39、自动空气开关可供电路过载、短路、失压以及电压降低时,自动切断电路之用。40、绕线式异步电动机转子绕组的三个末端接在一起,三个起端接到外加变阻器上,这类具有绕线式转子的电动机,称绕线式电动机。41、绕线式异步电动机转子回路中接入变阻器来起动,有两个作用:⑴减小定子绕组的起动电流;⑵适当的起动变阻器阻值,可使起动转矩增大。
所以比鼠笼式电机有更大的起动转矩。42、鼠笼式电动机是在电网容量不够大时采用降压起动,电网容量比电动机容量大13-25倍左右时可直接起动。43、普通异步电动机在降压起动时起动转矩变小。当降压至额定电压的65%时起动(用自耦变压器起动),起动力矩只有额定转矩的63%左右,不利于重负荷起动。
44、绕线型电动机短时起动用频敏度阻器,适用于长期或间断长期工作的绕线型电动机,可达到近恒转矩起动。在满载起动时,起动电流为额定电汉的2。5倍,起动转矩为额定转矩的1。4倍。45、力的三要素是力的大小、方向、作用点。46、在任何力的作用下保持大小、形状不变的物体称刚体。
在工程上机械零件受力发生微小变形(可忽略)时,可作为钢体。47、受到两个力作用的钢体处于平衡状态的充分必要条件是:这两个力的大小相等、方向相反,且作用在同一直线上。48、机械运动的平衡是指物体相对于参照物处于静止或匀速直线运动的状态。49、约束和反约束的四个基本类型是柔性约束、光滑面约束、圆柱形光滑铰链约束、固定端约束。
50、静磨擦力方向与两物体间相对运动趋势的方向相反。51、最大静磨擦力的大小与法向反力成正比。即Fmax=fN,其中f称为静滑动磨擦系数。52、钢与钢的静磨擦系数是0。15(无润滑时),钢与钢的自锁角是Φ=8°31’所以在钢斜面的顷角大于此一角度时,其上自由放置钢件将下滑。
3. 压力平衡式叶片泵
叶片泵分为双作用泵和单作用泵:
双作用泵工作原理:它由定子、转子、叶片和配油盘等组成。定子内壁近似椭圆形。叶片安装在转子径向槽内并可沿槽滑动,转子与定子同心安装。当转子转动时,叶片在离心力的作用下压向定子内表面,并随定子内表面曲线的变化而被迫在转子槽内往复滑动,相邻两叶片间的密封工作腔就发生增大和缩小的变化。
衡的,故称双作用式,也称平衡式。
单作用式叶片泵工作原理:主要由定子、转子、叶片和配油盘等组成。定子的内表面是一个圆柱形,转子偏心安装在定子中,即有一个偏心距e,叶片装在转子径向滑槽中,并可在槽内径向滑动。转子转动时,在离心力和叶片根部压力油的作用下,叶片紧贴在定子内表面上,这样相邻两片叶片间就形成了密封工作腔。
4. 泵叶轮动平衡
在转动设备和流动介质中,低强度的机械振动是不可避免的。因此,在机组的制造和安装过程中,在机组的设计、运行和管理方面应尽可能避免振动造成的干扰问题,把振动危害减轻到最低限度。当泵房或机组发生振动时,应针对具体情况,逐一分析可能造成振动的原因,找出问题的症结后,在采取有效的技术措施加以消除。有些措施比较简单,有些措施相当复杂。若需要大量的资金,应对可采用的几个方案进行技术经济比较,结合机组技术改造进行。以下给出了电机、水泵及泵房振动的常见原因及消除措施。
电动机振动常见原因及消除措施:
1、轴承偏磨:机组不同心或轴承磨损。消除措施:重校机组同心度,调整或更换轴承。
2、定转子摩擦:气隙不均匀或轴承磨损。消除措施:重新调整气隙,调整或更换轴承。
3、转子不能停在任意位置或动力不平衡。消除措施:重校转子静平衡和动平衡。
4、轴向松动:螺丝松动或安装不良。消除措施:拧紧螺丝,检查安装质量。
5、基础在振动:基础刚度差或底角螺丝松动。消除措施:加固基础或拧紧底角螺丝。
6、三相电流不稳:转矩减小,转子笼条或端环发生故障。消除措施:检查并修理转子笼条或端环。
水泵振动常见原因及消除措施
1、手动盘车困难:泵轴弯曲、轴承磨损、机组不同心、叶轮碰泵壳。消除措施:校直泵轴、调整或更换轴承、重校机组同心度、重调间隙。2、泵轴摆度过大:轴承和轴颈磨损或间隙过大。消除措施:修理轴颈、调整或更换轴承。3、水力不平衡:叶轮不平衡、离心泵个别叶槽堵塞或损坏。消除措施:重校叶轮静平衡和动平衡、消除堵塞,修理或更换叶轮。
4、轴流泵轴功率过大:进水池水位太低,叶轮淹没深度不够,杂物缠绕叶轮,泵汽蚀损坏程度不同,叶轮缺损。消除措施:抬高进水池水位,降低水泵安装高程消除杂物,并设置栏污栅,修理或更换叶轮。
5、基础在振动:基础刚度差或底角螺丝松动或共振。消除措施:加固基础、拧紧地脚螺丝。6、离心泵机组效率急剧下降或轴流泵机组效率略有下降,伴有汽蚀噪音。消除措施:改变水泵转速,避开共振区域,查明发生汽蚀的原因,采取措施消除汽蚀。
其它原因引起的机组振动及消除措施:
1、拦污栅堵塞,进水池水位降低。消除措施:栏污栅清污,加设栏污栅清污装置。
2、前池与进水池设计不合理,进水流道与泵不配套使进水条件恶化。消除措施:栏污栅清污,加设栏污栅清污装置合理设计与该进前池、进水池和进水流道的设计。
3、形成虹吸时间过长,使机组较长时间在非设计工况运行。消除措施:加设抽真空装置,合理设计与改进虹吸式出水流道。
4、进水管道固定不牢或引起共振。消除措施:加设管道镇墩和支墩,加固管道支撑,改变运行参数,改变运行参数避开共振区。
5、拍门反复撞击门座或关闭撞击力过大。消除措施:流道(或管道)出口前设排气孔,合理设计拍门采取控制措施,减小拍门关闭时的撞击力。
6、出水管道内压力急剧变化及水锤作用。消除措施:缓闭阀及调压井等其它防止水锤措施。7、机组启动和停机顺序不合理,致使水泵进水条件恶化。消除措施:优化开机和停机顺序。
5. 平衡式叶片泵作用
液压系统是1795年英国约瑟夫·布拉曼(Joseph Braman,1749-1814)在1795年发明的。
液压系统的作用为通过改变压强增大作用力。一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。液压系统可分为两类:液压传动系统和液压控制系统。液压传动系统以传递动力和运动为主要功能。液压控制系统则要使液压系统输出满足特定的性能要求(特别是动态性能),通常所说的液压系统主要指液压传动系统。
一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。
液压系统的发展:
1795年英国约瑟夫·布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。
第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。液压元件大约在 19 世纪末 20 世纪初的20年间,才开始进入正规的工业生产阶段。1925 年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动 的逐步建立奠定了基础。20 世纪初康斯坦丁·尼斯克(G·Constantimsco)对能量波动传递所进行的理论及实际研究;1910年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。
第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近 20 多年。在 1955 年前后 , 日本迅速发展液压传动,1956 年成立了“液压工业会”。近20~30 年间,日本液压传动发展之快,居世界领先地位。
6. 单作用式叶片泵又称非平衡式叶片泵
因为带倾角的叶片泵不允许反转,并须保证叶片方向与转子旋转方向对应。
叶片在工作过程中,受离心力和叶片根部压力油的作用,使叶片和定子紧密接触。
当叶片转至压油区时,定子内表面迫使叶片推向转子中心,它的工作情况和凸轮相似,叶片与定子内表面接触有一压力角,且大小是变化的(其变化规律与叶片径向速度变化规律相同-即从零逐渐增加到最大,又从最大逐渐减小到零)。
因而在双作用叶片泵中,将叶片顺着转子回转方向前倾一定角度,使压力角减小,从而可以减小侧向力,保证叶片在槽中移动灵活,并可减少磨损。当叶片有安放角时,叶片泵就不允许反转。
叶片泵的转向标在泵体上,其转子装入泵体时时,配油口位置应进行确认,即配油盘与壳体之间应有固定关系,一般用配油盘的上销和泵体上的孔进行配合定位,这样就实现了泵体油口、配油盘油口、定子工作区段三者的配合。
扩展资料
叶片泵的主要优点:
1、输出流量比齿轮泵均匀,运转平稳,噪声小。
2、工作压力较高,容积效率也较高。
3、单作用叶片泵易于实现流量调节,双作用叶片泵则因转子所受径向液压力平衡,使用寿命长。
4、结构紧凑,轮廓尺寸小而流量较大。
叶片泵的主要缺点:
1、自吸性能较齿轮泵差,对吸油条件要求较严,其转速范围必须在500~1500r/min范围内。
2、对油液污染较敏感,叶片容易被油液中杂质咬死,工作可靠性较差。
3、结构较复杂,零件制造精度要求较高。
叶片泵主要用于机床控制,特别是双作用叶片泵因流量脉动很小,因此在精密机床中得到广泛使用。
7. 平衡式叶片泵对其定子内表面过渡曲线有何要求
是指容积式泵中的滑片泵还是指离心泵如果是离心泵或混流泵,那么有以下建议:
一、改变水泵特性曲线1、调节转速,可通过变频实现;
2、切割叶轮外径;
3、改变叶轮叶片角度;
4、改变前置导叶叶片角度;
5、改变叶片前缘间隙。
二、改变装置的特性曲线1、调节出口阀门;
2、调节贮水箱液位;
3、旁流分流调节;
4、汽蚀调节;
三、同时调节水泵及装置的特性曲线。详细可参见《现代泵手册》关醒凡著希望可以帮到你
8. 旋转式叶片泵
1、从底部油槽和吸油腔的设置来看,在限压式变量叶片泵中,压油腔一侧的叶片底部油槽和压油腔相通,吸油腔一侧的叶片底部油槽和吸油腔相通,这样,叶片的底部和顶部所受的液压力是平衡的。这就避免了双作用叶片泵在吸油区的定子内表面出现磨损严重的问题。
2、从叶片的倾角来看,限压式变量叶片泵的叶片倾角的倾斜方向正好与双作用叶片泵相反,这是因为限压式变量叶片泵的叶片上下压力是平衡的,叶片在吸油区向外运动主要依靠其旋转时的离心惯性作用,根据力学分析,这样的倾斜反向更有利于叶片在离心惯性作用下向外伸出。
3、从容积效率和机械效率上看,限压式变量叶片泵结构复杂,泄漏大,径向力不平衡,噪音大,容积效率和机械效率都没有双作用式叶片泵高,最高调定压力一般在7MPa 左右。但它能按负载大小自动调节流量,功率利用合理,可减少油液发热。
9. 平衡叶片泵的运动规律
液压是机械工业上的一个名词,但是液压传动有许多突出的优点,因此它的应用非常广泛,如一般工业用的塑料加工机械、压力机械、机床等;所以,接下来主要给大家讲述的是液压的发展史的相关介绍。
液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,1795年英国约瑟夫·布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。
第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。液压元件大约在 19 世纪末 20 世纪初的20年间,才开始进入正规的工业生产阶段。1925 年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。20 世纪初康斯坦丁o尼斯克(GoConstantimsco)对能量波动传递所进行的理论及实际研究;1910年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。
液压机
第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近 20 多年。在 1955 年前后,日本迅速发展液压传动,1956 年成立了“液压工业会”。近20~30 年间,日本液压传动发展之快,居世界领先地位。
钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。
以上就是液压发展史的相关介绍的知识,希望对大家能够有所帮助,也希望大家能够多了解液压的知识。
10. 平衡式叶片泵又称
限压式变量叶片泵系{单作用}油泵,泵的定子可以沿一定的方向作平移运动,工作时,根据系统负载的变化通过分别位于叶片泵定子两边的变量活塞和预紧弹簧的力平衡原理,可以改变变量泵定子与变量泵转子的偏心距,从而改变了变量叶片泵的流量。
- 相关评论
- 我要评论
-